Askey-wilson Functions and Quantum Groups
نویسنده
چکیده
Eigenfunctions of the Askey-Wilson second order q-difference operator for 0 < q < 1 and |q| = 1 are constructed as formal matrix coefficients of the principal series representation of the quantized universal enveloping algebra Uq(sl(2,C)). The eigenfunctions are in integral form and may be viewed as analogues of Euler’s integral representation for Gauss’ hypergeometric series. We show that for 0 < q < 1 the resulting eigenfunction can be rewritten as a very-well-poised 8φ7-series, and reduces for special parameter values to a natural elliptic analogue of the cosine kernel. Dedicated to Mizan Rahman
منابع مشابه
A ug 1 99 6 8 LECTURES ON QUANTUM GROUPS AND q - SPECIAL FUNCTIONS
The lecture notes contains an introduction to quantum groups, q-special functions and their interplay. After generalities on Hopf algebras, orthogonal polynomials and basic hypergeometric series we work out the relation between the quantum SU(2) group and the Askey-Wilson polynomials out in detail as the main example. As an application we derive an addition formula for a two-parameter subfamily...
متن کاملQUANTUM GROUPS AND q - SPECIAL FUNCTIONS
The lecture notes contains an introduction to quantum groups, q-special functions and their interplay. After generalities on Hopf algebras, orthogonal polynomials and basic hypergeometric series we work out the relation between the quantum SU(2) group and the Askey-Wilson polynomials out in detail as the main example. As an application we derive an addition formula for a two-parameter subfamily...
متن کاملFourier transforms on the quantum SU(1,1) group
The main goal is to interpret the Askey-Wilson function and the corresponding transform pair on the quantum SU(1, 1) group. A weight on the C *-algebra of continuous functions vanishing at infinity on the quantum SU(1, 1) group is studied, which is left and right invariant in a weak sense with respect to a product defined using Wall functions. The Haar weight restricted to certain subalgebras a...
متن کاملAskey-Wilson Polynomials as Zonal Spherical Functions on the SU(2) Quantum Group
On the SU(2) quantum group the notion of (zonal) spherical element is generalized by considering left and right invariance in the infinitesimal sense with respect to twisted primitive elements of the sl(2) quantized universal enveloping algebra. The resulting spherical elements belonging to irreducible representations of quantum SU(2) turn out to be expressible as a two-parameter family of Aske...
متن کاملA second addition formula for continuous q-ultraspherical polynomials
This paper provides the details of Remark 5.4 in the author’s paper “Askey-Wilson polynomials as zonal spherical functions on the SU(2) quantum group”, SIAM J. Math. Anal. 24 (1993), 795–813. In formula (5.9) of the 1993 paper a two-parameter class of Askey-Wilson polynomials was expanded as a finite Fourier series with a product of two 3phi2’s as Fourier coefficients. The proof given there use...
متن کامل